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Abstract 
Most rotation functions try to achieve maximal correla- 
tion between two Patterson functions by systematically 
rotating one and computing the overlap with the other. 
In contrast, the direct rotation function rotates a search 
model relative to the crystal unit cell and evaluates the 
linear correlation coefficient (Patterson correlation, PC) 
between squared normalized structure-factor amplitudes 
of the observed and calculated diffraction data. Structure 
factors are calculated from the rotated search model in a 
P1 unit cell identical to that of the target crystal. PC 
makes use of all self-Patterson vectors of the search 
model. A comparison of the direct rotation function, a 
real-space rotation function, and a fast rotation function 
suggests that the direct rotation function provides a 
considerable enhancement of the signal-to-noise ratio 
compared to other two. Combined with PC refinement, 
the direct rotation function was successful in solving 
multidomain macromolecular crystal structures. 

Introduction 
Patterson searches or molecular replacement have proved 
to be an effective means of solving macromolecular 
crystal structures using knowledge of similar structures 
(Hoppe, 1957; Rossmann & Blow, 1962). A model 
is obtained by sequence-similarity searches using the 
database of known crystal and solution nuclear magnetic 
resonance structures. The three-dimensional structure of 
the model must be close to that of the unknown crystal 
structure, or at least to parts of it. This search model 
is first rotated and then translated in the unit cell of 
the target crystal in order to obtain a maximum fit 
between observed and calculated diffraction data. If the 
correct orientation and position are found, the model can 
then serve as a starting point for model rebuilding and 
refinement. 

Considerable effort has been devoted towards devel- 
oping efficient algorithms for computing rotation func- 
tions (Rossmann & Blow, 1962; Huber, 1965; Crowther, 
1972; Navaza, 1994). However, the increased com- 
putational efficiency comes at the cost of numerical 
approximations that may limit the success of a rotation 
search. A rotation function must produce an orientation 
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as close as possible to the correct one in order for the 
subsequent translation function to be successful. As a 
result of the steady increase in available computational 
resources, efficiency is not necessarily a prime concern 
anymore. Therefore, more exact and computationally 
demanding approaches can be realistically used. 

The criteria of fit of the rotation function is commonly 
approximated by a product between Patterson functions 
integrated over a specified volume. Furthermore, most 
rotation functions rotate Patterson functions against each 
other in order to achieve maximal correlation between 
them. Consequently, the integration volume needs to be 
restricted in order to avoid inclusion of artificial cross- 
vectors in the Patterson map of the search model. 

Hauptman (1982) showed that the linear correlation 
coefficient between squared normalized structure factors, 
also referred to as 'Patterson correlation' (PC), is a 
measure of the phase accuracy of a partial atomic model. 
PC, therefore, has a natural application in molecular 
replacement where partial models are often used (Fu- 
jinaga & Read, 1987; Briinger, 1990). PC correlates 
observed and calculated structure factors where the latter 
are calculated for each sampled orientation of the search 
model in a P1 unit cell with dimensions identical to 
those of the target crystal (Fig. 1). PC is used for the 
direct rotation function (Brtinger, 1992), refinement of 
the orientation and interdomain relationships (Brtinger, 
1990), and translation searches (Fujinaga & Read, 1987). 
PC makes use of all Patterson self-vectors of the search 
model and, thus, the integration volume does not have 
to be limited. The direct rotation function has been al- 
ready used to solve two difficult molecular-replacement 
problems (Berchtold et al., 1993; Gewirth & Sigler, 
1995). 

Here we present a comparison of the direct rotation 
function with two other rotation functions: the AMoRE 
fast rotation function (Navaza, 1994), and a real-space 
rotation function (Huber, 1965; Steigemann, 1974). The 
rotation functions are evaluated under a series of con- 
trolled conditions where the correct orientations are 
known. The test systems studied are an Fab fragment 
of a murine antibody complexed with digoxin and a 
mutant of the DNA-binding domain of the glucocorticoid 
receptor complexed with its cognate DNA. Several tests 
are performed using observed or simulated diffraction 
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data, partial models, different resolution ranges and 
thermal B factors of the search model. From a peak 
analysis of the grid points produced by each rotation 
function, the signal-to-noise ratio is determined. The 
direct rotation function consistently provides a signif- 
icantly better signal-to-noise ratio than the other two 
rotation functions. Finally, we propose a molecular- 
replacement strategy for solving multisubunit crystal 
structures with greater confidence. 

Theory 

Conventional rotation functions 
All rotation functions involve the computation of 

the Patterson function or its reciprocal space analog 
for the search model (Pr,,) and the observed diffraction 
data (Px). In conventional rotation functions, the search 
model is placed in a large orthogonal unit cell and the 
Patterson function Prn is rotated in order to achieve 
maximal overlap with Px (Fig. 1). Therefore, lattice- 
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Fig. I. Comparison of the direct rotation function and conventional 
rotation functions. Instead of rotating a Patterson map computed from 
the model, in the direct rotation function, the model itself is rotated, 
and structure factors are recomputed for each sampled orientation 
of the model. Instead of using a product of the Patterson functions, 
the direct rotation function computes the linear correlation coefficient 
between squared normalized structure factors PC (equation 2). 

translation vectors between neighboring unit cells need 
to be removed from the rotation function by restricting 
the integration volume (Rossman & Blow, 1962; Huber, 
1965). 

Px and P,, are rotated with respect to each other and 
a product between the Patterson functions is computed, 

Rot(9/) = f Px(r)em(f~r)dV , (1) 
u 

where the 3 × 3 rotation matrix f~ is described by three 
angles (e.g. Euler angles), r is the integration variable, 
and U is the volume of integration, usually spherical, 
centered at the origin. 

Formulations of the rotation function in real and 
reciprocal space are in principle equivalent, although 
there are differences in the nuerical approximations 
employed and in the way certain weighting and cut-off 
schemes can be applied. 

In the real-space formulation, only the strongest grid 
points of the model Patterson function Pm a r e  used in the 
integration and the value of the crystal Patterson function 
Px at these grid points are computed by interpolation 
(Huber, 1965; Steigemann, 1974). The integration is 
typically carried out over a volume that eliminates 
all Patterson vectors beyond a certain radius. The ef- 
fect of the origin peak can be removed by subtracting 
its contribution from the Patterson function (Lipson & 
Cochran, 1966; Nordman, 1966; MUller, Oehlenschl~iger 
& Buehner, 1995). 

Crowther's (1972) fast rotation function uses a spher- 
ical harmonic expansion of (1) and a fast Fourier trans- 
form in order to compute the rotation function in a highly 
efficient manner. Navaza's (1993, 1994) implementation 
of the fast rotation function in AMoRe differs from 
Crowther's original work in two respects. First, instead 
of using a Fourier-Bessel expansion, AMoRE achieves 
better accuracy with numerical intergration (Navaza, 
1987, 1993). Second, AMoRe employs a more stable 
recurrence relation to compute the reduced rotation ma- 
trices (Navaza, 1990). This permits the inclusion of 
higher order spherical harmonics allowing more accurate 
expansions of the Patterson functions over a larger 
volume U. 

The direct rotation function 
The direct rotation function differs from conventional 

rotation functions by placing the model in a cell of 
P1 symmetry having cell dimensions and angles equal 
to that of the target crystal structure (Fig. 1). Thus, 
the Patterson function computed from the model can 
be directly compared against the observed one without 
having to restrict the integration volume. Instead of 
rotating the Patterson function, the model itself is rotated 
by a matrix operator f~. 

The target of the direct rotation function is defined 
as the linear correlation coefficient between observed 
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(Eob0 and calculated [E,,,(~)] normalized structure fac- 
tors (Hauptman, 1982), 

edirect(a) = PC = <lEobsl21Em(  l z -  <lfobsl2><lfm(   12>> 
- { [(IEob~l 4 - <lEob~12) 2) 
x (]Em(~)I 4 -(IEm¢~112)2)]'/2}, (2) 

where the symbols () denote an average computed over 
the observed reflections expanded to Pi. The normaliza- 
tion of the structure factors is carried out numerically in 
equal-volume resolution shells. 

Peak analysis 

A cluster analysis was carried out for the grid points 
of both the direct and the real-space rotation functions 
(Briinger, 1992). The top 6000 grid points of the rotation 
functions were sorted by value. The highest grid point 
was marked. All other grid points were considered one 
at a time in decreasing order. A grid point was marked if 
no other grid point within l0 ° was already marked. The 
marked grid points are referred to as 'points'. It should 
be noted that a peak of the rotation function would show 
up as point but the converse is not necessarily true. The 
cluster analysis produces exactly one point for a peak 
that is narrower than 10 °. Multiple points are produced 
for a peak that is broader than 10 °. Although this may 
seem somewhat redundant it offers an advantage for 
PC refinement by reducing the impact of the multiple 
maxima problem. Increasing the number of starting 
orientations around a given peak increases the chances 
of convergence to the global minimum which may not 
exactly coincide with the peak, especially when PC 
refinement is carried out at a higher resolution than the 
rotation function. 

The AMoRe rotation function performs a different 
peak analysis by identifying all grid points whose 
rotation-function values are higher than any of their 
nearest neighbors. We refer to these peaks also as points 
of the AMoRe rotation function. The slightly different 
definition of points for the different rotation functions 
did not significantly affect the comparison of the signal- 
to-noise ratios of the rotation functions (as defined in 
the Results section). 

Materials and methods 

Test case: (26-10) Fab fragment 

The structure of the murine antidigoxin (26-10) Fab 
fragment complexed with digoxin was solved (Briinger, 
1991) by using a conventional rotation function, PC 
refinement, and a translation function with the Fab por- 
tion of the HyHEL-5 Fab-lysozyme complex determined 
by Sheriff et al. (1987). The complex crystallized in 
space group P21, a = 44.144, b = 164.69, c = 70.17/~, 
"y = 108.50 °, with two Fab molecules in the asymmet- 
ric unit related by non-crystallographic symmetry. The 

diffraction data were twinned with partially overlapping 
reflections from the twins. A procedure was employed 
to reduce the residual amplitudes from the weaker of 
the two twins (Strong, 1990). The data set was 78% 
complete at 15-4/~, resolution after application of the de- 
twinning procedure (data set 3r9-det using the notation 
of Brfinger, 1991). The structure was eventually refined 
to an R value of 17.4% at 8-2.5/~ resolution (Jeffrey et 
al., 1993). 

In the numbering scheme of the HyHEL-5 Fab 
fragment the variable domain consists of the domains 
V t = l - 1 0 6  and Vn=1001-1116, whereas the con- 
stant domain consists of residues CL= 107-212 and 
CH1 = 1117-1218. The elbow angle is defined as the 
angle between the pseudo twofold axes of symmetry of 
the VL--Vn and CL-CH 1 domain pairs. The elbow-angle 
for the HyHEL-5 search model is 161.1 ° compared with 
171.5 ° for the (26-10) Fab crystal structure. All atoms 
of the HyHEL-5 Fab crystal structure were included 
during the original molecular replacement. 

For the rotation-function comparisons presented here, 
the same Fab search model was used. One series of tests 
used the original observed diffraction data of the (26-10) 
Fab-digoxin complex truncated to 4 A  resolution. A 
second series used simulated structure factors calculated 
from a partially refined (26-10) Fab--digoxin structure. 
The latter series was used to assess how the rotation 
functions would perform under ideal conditions in the 
absence of experimental error. 

Test case: TRGR-GRE complex 

TRGR is a mutant of the glucorticoid receptor (GR) 
which has been modified to adopt the binding specificity 
of the thyroid receptor (Gewirth & Sigler, 1995). This 
protein was crystallized in a complex with a glucocor- 
ticoid response element (GRE) DNA duplex in space 
group P212121, a - 38.744, b = 73.608, c -- 116.505/~. 
The GRE DNA fragment consisted of the symmetric 18 
base-pair duplex, 

5'-TTCCAGAACATGTTCTGGA-3', 

with an overhanging 5' thymine at each end. The du- 
plex contained two adjacent hexameric GRE half sites 
(5'-TGTTCT-3') with no spacer between them. One copy 
of the receptor TRcR was bound to each DNA half site, 
giving rise to an asymmetric unit containing two proteins 
and one DNA molecule. The structure was solved by 
molecular replacement with the direct rotation function 
using one half of the rat glucocorticoid receptor-GRE 
DNA complex (Luisi et al., 1991) as a search model. 
Thus, the search model consisted of a protein monomer 
and a GRE half site. Residues that differed between GR 
and TRoR (58, 59, 62, 77-81) were truncated to alanine 
or glycine in the search model. 

The initial diffraction was truncated to 4/~. resolution 
for solution by molecular replacement using the direct 
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rotation function. At this resolution the data set was 93% 
complete and Rsym was 5.4%. After collection of a higher 
resolution data set, the structure was eventually refined 
to a free R value of 28.8% and an R value of 19.1% at 
6-2 ,~ resolution (Gewirth & Sigler, 1995). 

For the rotation-function comparisons presented here, 
the GR-GRE half complex is again used as a search 
model with the initial TRGR-GRE diffraction data set 
truncated to 4 A resolution. A second set of tests used 
simulated data calculated from the refined TRGR-GRE 
crystal structure. 

Rotation-function parameters 
The fast rotation function was carried out with the 

AMoRe program as implemented in the CCP4 package 
Version 2.4 (Collaborative Computational Project, Num- 
ber 4, 1994). The direct and real-space rotation func- 
tions were computed by X-PLOR, Version 3.1, (Brtinger, 
1992) modified to perform the cluster analysis described 
above for the direct rotation function. Table 1 shows the 
definition of the signal-to-noise ratios for the different 
rotation functions. 

Unless otherwise noted, all of the rotation searches 
used reflections from 15 to 4.0 A resolution and uni- 
form model B factors of 15/~2. The direct rotation and 
the real-space rotation functions used reflections with 
Fobs > 2tr. The outer radius r of the Patterson integration 
volume for the real-space and AMoRE rotation function 
was set to the maximum distance from the center of mass 
of the model to any atom (40 and 27/~ for the Fab and 
TRoR-GRE test cases, respectively). The inner radius of 
integration for the real-space rotation function was set to 
5.0/~. The origin peak was subtracted from the Patterson 
function for the real-space rotation function (Lipson & 
Cochran, 1966; Nordman, 1966; Mtiller et al., 1995). 
The inner radius for AMoRE was fixed at zero as required 
by the program. The dimensions of the orthogonal model 
unit cell for computing P,,, in the AMoRe and real-space 
rotation functions were set to be larger than the extent 
of the model plus the integration radius r. 

The AMoRE rotation function used Euler sampling 
of the rotation function in uniform 2.5 ° increments. 
The real-space rotation function used quasi-orthogonal 
Lattman (1972) sampling with a 02 interval of 2.5 °. 
This is an appropriate sampling interval considering the 
integration radii and the resolution limit (4/~) that were 
used in most test cases. The direct rotation function 
also used quasi-orthogonal Lattman sampling but with 
a 02 interval of 5 ° in order to reduce the computer time 
required. Although the direct rotation function samples 
rotation space on a coarser grid than the AMoRe or 
the real-space rotation function, solution peaks were, 
in general, broad enough to ensure detection even with 
the coarser sampling interval (shown in Fig. 2 for the 
TRGR-GRE test case). 

The computation of PC (2) was performed in 20 
equal-volume resolution shells. Experience shows that 

Table 1. Definition of the signal-to-noise ratio for 
rotation functions 

The definition is illustrated for the TRGR--GRE diffraction data using 
the GR protein without the DNA as the search model. Only the top 
points and the point corresponding to the correct orientation are shown. 
Signal points (i.e. within 15 ° around one of the correct orientations) are 
shown in bold. For each point, Euler angles are given along with the 
rotation function value, the rotation function value in tr units (standard 
deviations above the mean), and the error from the known orientation 
(°). The top two points of  the direct rotation function correspond to the 
two solutions related by non-crystallographic symmetry. The real-space 
rotation function produced one of the solutions as point 17. The A M o R e  
rotation function produced one of the correct orientations as point 72. 
For the direct rotation function., the signal-to-noise ratio is 4.39(r/ 
3.55cr-----!.24 (point 1 versus  point 3). For the real-space rotation 
function the signal-to-noise ratio is 3.63(r/4.4cr = 0.83 (point 17 versus  

point 1). For the A M o R e  rotation function the signal-to-noise ratio is 
17.73tr/3.64a = 0.48 (point 72 versus  point 1). 

Direct rotation function for TRGR-GRE 
Point No. 01 02 03 RF (r Error (o) 
1 123.68 45.110 137.52 0.068 4.39 9.557 
2 121.58 55.110 42.83 0.059 3.82 3.642 
3 143.77 45.00 116.08 0.055 3 .55  23.529 
4 115.65 55.00 149.40 0.054 3.46 5.094 
5 135.66 55.00 34.41 0.052 3.31 10.883 
6 139.23 80.00 37.49 0.051 3.27 28.681 
7 135.19 70.(X) 0.19 0.050 3.22 37.273 
8 125.33 40.00 125.33 0.050 3.19 19.357 
9 127.35 90.00 38.25 0.048 3.06 34.257 
10 134.31 50.00 26.31 0.048 3.05 12.190 

Real-space rotation function for TRGR--GRE 
Point No. 01 02 03 RF (r Error (°) 
1 107.00 25.00 335.00 0.820 4.40 28.979 
2 127.84 30.00 107.84 0.806 4.35 36.885 
3 106.12 25.00 346.12 0.791 4.28 31.724 
4 127.55 30.00 127.55 0.771 4.20 25.483 
5 111.59 25.00 39.59 0.763 4.16 32.761 
6 122.83 22.50 45.68 0.717 3.98 34.170 
7 135.74 35.00 92.88 0.716 3.97 43.423 
8 105.25 25.00 357.25 0.704 3.92 37.230 
17 122.25 40.00 309.75 0.633 3.63 17.350 

A M o R e  rotation function for T R r R - G R E  
PointNo.  01 02 03 RF a Error(~) 
1 35.06 63.02 85.26 10.900 3.64 73.898 
2 92.82 30.83 13.76 10.500 3.50 41.226 
3 255.61 80.39 48.69 9.600 3.20 65.053 
4 343.27 36.00 170.00 9.600 3.20 85.555 
5 230.83 39.45 152.65 6.500 3.17 76.573 
6 33. i 2 67.98 139.49 9.400 3.13 87.847 
7 253,40 78.77 30.00 9.300 3.10 63.824 
8 309.20 78.52 55.80 9.100 3 .03  52.105 
72 121.73 55.95 43.88 5.200 1.73 4.570 

the performance of the direct rotation function is rather 
insensitive to the bin size. 

For both the real-space and direct-rotation functions, 
structure factors were calculated from electron density 
in a unit cell sampled with a grid spacing of one third of 
the high-resolution limit except at low resolution (8-15 
and 10-15/~) where a spacing of 2/~ was used. For the 
AMoRe rotation searches, the grid spacing was fixed at 
0.75 ,~ as required by the program. 

Space-group symmetry allowed us to restrict sampling 
of the rotation function to the asymmetric units shown 
in Table 2. 
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Table 2. Asymmetric units for rotation functions and 
Euler angle conventions 

The Euler angles 01,02, 03 are defined by counter-clockwise rotation of 
the model by 01 around the z axis, rotation by 02 around the new x axis, 
and rotation by 03 around the new z axis. The quasi-orthogonal Euler 
angles (0+, 02, 0_) are defined through 0+ = 01 + 03 and 0_ = 01 - 03 
(Lattman, 1972). The Euler angles are related to AMoRe's  (a,/3, y) 
angles by the following equations: 01 = - [ y - ( = / 2 ) ] ,  0z = - / 3 ,  
o3 = - [ .  + (=/2)1. 

Program Space group P21, b axis unique Space group P212~21 
0 < 0 _  <2rt 0 < 0 _  <rr 

X-PLOR 0 < 02 < (rr/2) 0 < 02 < (rr/2) 
0 < 0 +  <4rr 0<0+  <4Jr 
0 < u < 2 r t  0 < u < ~ r  

AMoRe 0 </3 < (rr/2) 0 < ¢~ < (rr/2) 
O< y<27t  O< y<21r 

0 2 

I .(kr 

O! 

9o 03 
911 

180 360 270 02 

2.0a 

OIL 03 

270 
t s o  36o 0 2 

3 . 0 ~  

0 1 ~  03 

4 . 0 o ~  

0 1 ~ ~ ~ 2 7 0  ~ i ~ ~ j  °3 

180 360 

Fig. 2. Three-dimensional maps of the direct rotation function (in Euler 
angle space) at various contour levels. The GR protein was used as a 
search model with the TRGRGRE diffraction data. At a level of 3or, 
the two correct orientations related by non-crystallographic symmetry 
are indicated by hollow arrows. At 4or, only one of the two points 
shows up (indicated by the solid arrow). 

Results 
We defined the signal-to-noise ratio of rotation functions 
as the ratio of the value of the highest signal point to 
that of the highest noise point measured in cr units above 
the mean. The criterion by which we distinguished signal 
from noise was determined by the radius of convergence 
of PC refinement. Generally, a point that is within about 
15 ° of one of the correct orientations will converge 
to it by PC refinement (Briinger, 1993) and is thus 
considered a signal point. A point that is more than 20 ° 
away from the correct orientation is outside the radius 
of convergence of PC refinement and is thus considered 
to be noise. Artificial specification of a cutoff of 20 ° 
did not significantly change the results and, thus, our 
conclusions are independent of the precise definition of 
signal and noise. 

A signal-to-noise ratio greater than 1 indicates that 
the highest point is within 15 ° to the correct orientation. 
A signal-to-noise ratio less than one indicates that the 
highest point is noise. Since only the top 99 points ob- 
tained from each of the rotation functions were analyzed, 
a zero signal-to-noise ratio was assigned if the correct 
orientation was not among the top 99 points. 
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All atoms Poly-alanine Ca atoms 
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1.25 

0.75 
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All atoms Poly-alanine C a atoms 

l Direct 

[1111111111111111 AMoRe 

Real space 

Fig. 3. Signal-to-noise ratio for the three rotation functions using 
the HyHEL-5 Fab structure with the (26-10) Fab-digoxin complex 
diffraction data. 
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Because of the presence of twofold non- 
crystallographic symmetry in both test cases, two 
correct orientations for the search model exist for 
both the Fab and TRcR-GRE test cases. If one of 
the orientations was found by the particular rotation 
function, the other one was generally also present 
among the top points. Interestingly, the strength of both 
signals is not necessarily identical (Fig. 2). 

Fig. 3 compares the performance of the direct rotation 
function, the A M o R e  fast rotation function, and the real- 
space rotation function when applied to the (26-10) Fab 
test case using the HyHEL-5 Fab search model. With 
the all-atom model, the direct rotation function success- 
fully identifies the two correct orientations related by 
non-crystallographic symmetry for both observed and 
simulated diffraction data as the two top points. The 
highest points of the other two rotation functions are 
incorrect, although the correct orientations are among 
the top 99 points. The strength of the signal falls off as 
a partial model is used consisting of backbone and C ~ 
atoms. The signal-to-noise ratio slightly improves for 
observed data when reducing the polyalanine model to 

a C '~ model. Apparently, the C '~ model is more precise 
and, therefore, produces a stronger signal although the 
number of scattering atoms is significantly reduced. 

Figs. 4 and 5 compare the performance of the rotation 
functions when using search models consisting of the 
constant or the variable domain of the Fab, respectively. 
The direct rotation function correctly identifies the solu- 
tions as the highest points while this is not the case for 
the conventional rotation functions. Despite having half 
as many X-ray scatterers in the search model, which 
amount to less than 25% of the asymmetric unit, the 
solutions produced by the direct rotation function for the 
individual domains always have a higher signal-to-noise 
ratio than those for the complete Fab molecule (Fig. 3). 
Thus, the individual domains are better search models 
than the complete Fab which is probably a consequence 
of the 10 ° difference in elbow angle between the search 
model and the crystal structure (Brtinger, 1991). The di- 
rect rotation function correctly identifies the orientations 
of the individual domains as the hightest point when 
using C '~ models consisting of as little as 5% of the 
X-ray scatterers in the asymmetric unit (Figs. 4 and 5). 

2 . 5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Fig. 4. Signal- to-noise ratio for the three rotation functions using the 
constant domain of  the HyHEL-5  Fab structure with the (26-10)  

Fab digoxin complex diffraction data. 
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Fig. 5. Signal- to-noise ratio for the three rotation functions using the 
variable domain of  the HyHEL-5  Fab structure with the (26-10)  

Fab-digoxin complex diffraction data. 



746 DIRECT ROTATION FUNCTION 

Fig. 6 compares the rotation functions obtained for 
the TRGR--GRE test case. The top point of the direct 
rotation function corresponds to the correct orientation 
when using all-atom models for the protein-DNA half 
complex or the protein by itself. The other two rotation 
functions do not produce the correct orientation as the 
highest point. 

Fig. 7 shows the effect of resolution on the rotation 
functions when applied to the (26-10) Fab-digoxin 
complex using the variable domain as a search model. 
The signal disappears as the resolution is lowered and is 
improved as the resolution increased. Together with pre- 
vious results (Briinger, 1993), we conclude that at lower 
resolution, false maxima of the rotation function beome 
dominant. In fact, using data in the ranges 8-15 and 
10--15 A, the top points of the direct rotation function 
are far (30-90 ° ) from the correct orientations. Over the 
large resolution range tested, the direct rotation function 
always had a higher signal-to-noise ratio than the other 
two rotation functions. 

Fig. 8 shows the effect of changing the uniform model 
B factors when applied to the (26-10) Fab--digoxin 

complex. Modification of the uniform B factors in the 
search model has very little effect on any of the rotation 
functions. 

Discussion 

The direct rotation function showed a higher signal- 
to-noise ratio compared to the AMoRe and real-space 
rotation functions. The underlying reason can be found 
in the inclusion of all self-Patterson vectors of the search 
model. In contrast, conventional rotation functions are 
typically limited to a subset of self vectors wihin the 
radius of integration. 

The increased signal-to-noise ratio provided by the 
direct rotation function comes at some computational 
cost. Table 3 compares the time required for computing 
the three rotation functions. A direct rotation search can 
take two orders of magnitude longer than an AMoRE 
fast rotation search. Yet with a system such as the 
TRGR-GRE complex which has a very weak solution 
signal, only the direct rotation function identified the 
correct orientation as the highest point (Fig. 6). Systems 
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Fig. 6. Signal-to-noise ratio for the three rotation functions using the 
structure of the GR--GRE half complex as a search model with the 
TRGR-GRE complex diffraction data. 

S/N 

S/N 

3 

2.5 

2 

1.5 

1 

0.5 

1.75 

1.5 

1.25 

1 

0.75 

0.5 

3.5 4 4.5 5 6 

dmin (.~) 

8 10 

3.5 4 4.5 5 6 8 10 
dmin (.~) 

Direct 

rllllllllllllllll AMoRe 

Real space 

Fig. 7. Signal-to-noise ratio as a function of resolution for the three rota- 
tion functions using the atoms of the variable domain of the HyHEL-5 
Fab structure with the (26-10) Fab--digoxin complex diffraction data. 
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that have stronger solution signals will be amenable to 
the use of the other rotation functions, but the same 
solution produced by the direct rotation function is 
likely to be more clearly distinguished from noise. 
In many cases, such added confidence may be worth 
the computational effort required by the direct rotation 
function. The increased sensitivity of the direct rotation 
function enables the use of search models that constitute 
a smaller portion of the asymmetric unit, such as C '~ 
models (Figs. 4 and 5). 

The broad peaks belonging to the correct orientations 
(Fig. 2) suggest that it may be possible to conduct 
direct rotation searches on a very coarse grid followed 
by optimization of selected peaks using simulated an- 
nealing or genetic algorithms (Mitchell Lewis, personal 
communication). 

Concluding remarks 

Under the conditions tested, the direct rotation function 
shows a considerable enhancement of the signal-to-noise 
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Fig. 8. Signal-to-noise ratio as a function of uniform model B factors for 
the three rotation functions using the atoms of the constant domain 
of the HyHEL-5 Fab structure with the (26-10) Fab~ligoxin complex 
diffraction data. 

Table 3. Rotation-function computer times 

Central processing unit times (in hours on an Hewlett Packard HP735 
workstation) of  the rotation searches for the (26-10) Fab-digoxin 
diffraction data using the HyHEL-5 Fab as a search model and for the 
TRGR-GRE diffraction data using the GR--GRE half complex as a 
search model. 

Rotation function (26-10) Fab-digoxin complex TR(;R-GRE 
AMoRe O. 1 0.02 

Real space 2.{) (1.91 
Direct 31.2 14.0 

ratio relative to the other rotation functions. However, 
the application of PC refinement (Brtinger, 1990, 1991, 
1993) to the highest points of a conventional rotation 
function may have also identified the correct orientation, 
an approach that is now widely used for solving crys- 
tal structures by molecular replacement. The question 
arises what advantage the direct rotation function offers 
compared to this approach. 

One of the test cases presented here, the (26-10) 
Fab fragment, was originally solved by a combination 
of a conventional rotation function combined with PC 
refinement (Brianger, 1991). It was difficult to achieve 
convergence of PC refinement for the 24 parameters 
describing the positions and orientations of the four 
subunits of the Fab fragment (constant and variable do- 
mains of the heavy and light chains). By trial and error, 
two different conditions were found under which either 
one of the orientations related by non-crystallographic 
symmetry emerged. No single condition was found un- 
der which both orientations could be simultaneously 
identified. Thus, the success of PC refinement was to 
some degree determined by chance. Furthermore, one of 
the solutions was far down the list of highest points 
of the conventional rotation function. This example 
illustrates two situations where PC refinement fails: if 
the correct orientation is not in the selected list of 
highest points or if PC refinement does not converge. 
Although the first situation can in principle be avoided 
by a comprehensive PC-refinement search (Evans, Rose, 
To, Young & Bundle, 1994) this approach is in most 
cases impractical because of the extremely large amount 
of computer time required. 

The direct rotation function can improve the perfor- 
mance of PC refinement by using the strategy outlined 
in Table 4. First, the direct rotation function has a higher 
chance finding the correct orientation as the highest point 
(Figs. 3-8). Second, it can be applied to the subunits 
of the search model, such as the constant and variable 
domains of an Fab fragment, and still produce a signifi- 
cant signal whereas conventional rotation functions may 
miss the signal altogether (Figs. 4 and 5). After finding 
the orientations of the individual subunits, the search 
model can be assembled taking into account reasonable 
geometric and packing criteria. PC refinement of the 
orientations and positions of the subunits will further 
improve the search model which can then bc used for 
the subsequent translation search. 
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Table 4. Combined direct rotation function and 
PC-refinement strategy 

• Direct rotation searches of model domains 
• Selection of the highest points for further analysis 
• Assembly of the domains for good packing and steric arrangements 
• PC refinement of the interdomain angles, positions, and the overall orientation 
• Translation search 

This approach was used in the structure solution 
of the TRGR--GRE mutant of the glucorticoid receptor 
DNA complex (Gewirth & Sigler, 1995). It should 
be noted that translation searches of the individual 
half complexes were unsuccessful, only the assembled 
full complex produced a significant translation-function 
solution. Thus, the combination of the direct rotation 
function using the half complex and PC refinement of 
the interdomain positions and angles of the full complex 
were needed to unambiguously solve the structure. The 
use of the direct rotation function significantly increased 
our confidence at the early stages of the structure- 
solution process because the highest point represented 
the same orientation regardless of whether the protein- 
DNA half complex or the protein alone was used (Fig. 
6). From this and other examples one can expect the 
direct rotation to become a useful method to address 
difficult molecular-replacement cases. 
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